

1
Abstract— Recently, a lot of mobile phone users are rapidly

switching to smartphones, and, many users download mobile
applications without any thought of security. Therefore, smartphones
are interesting target for malware, especially with Android devices.
So, it is too important to use a methodology to detect the malware
applications before installing it on the phones.

 In this paper we propose an effective methodology to detect
Android malware using static code analysis based models. The
proposed models are built to extract features relevant to malware
based on extracted permissions from AndroidManifest.xml file as
well as extracted methods and APIs from disassembled code to be
used as features for training machine learning classifiers.

Keywords— Android, Malware Detection, Machine learning,

Smartphones, Pattern Recognition.

I. INTRODUCTION
alware is an abbreviation for two words malicious and
software. Actually, it is software that included in the

computer system for malicious purposes, without any
knowledge from the computer owner. It may be used to collect
important information, or gain access to computer systems.
The seriousness of malicious software ranges from hurt the
users with annoying Ads to steal important data such as credit
card numbers and format the phone's memory.

Smartphones have become pervasive due to the availability
of office applications, Internet, games, vehicle guidance using
location-based services apart from conventional services like
voice calls, SMS and multimedia services. [2]
A lot of mobile phone users are rapidly switching to
smartphones. According to eMarketer [3], it is expected that
around 49% of the mobile phone users globally are likely to
use smartphones by 2017.

Many users download mobile applications without any
thought of security. Whereas, with exponentially increasing in
downloading mobile application, according to PortioResearch

This work was supported by Computer Science Department, Faculty of

computers and information, Helwan University.
Ahmed Hesham Mostafa, Computer science Department, Faculty of

computer and information, Helwan university, Cairo, Egypt (phone:
+2001095906541; e-mail: ahmed.hisham@fci.helwan.edu.eg).

Dr. Marwa M. A. Elfattah, Computer science Department,
Faculity of computer and information, Helwan university, Cairo, Egypt (e-
mail: marwa26880@gmail.com).

Prof. Aliaa Youssif , Computer science Department, Faculty of
computer and information ,Helwan University ,Cairo , Egypt (Phone: +202
27644827 ; Fax : +202 25547975 ;e-mail: aliaay@yahoo.com)

[4] downloading of mobile applications will continue to grow
to exceed 200 billion applications by the end of year 2017.
The number of markets which allow users to download
applications are increasing and the number of non-official
markets are also increasing, but non-official market do not
impose security measures on the phone applications that are
being uploaded by developers so many hackers upload
malicious applications to these markets. Therefore, it is
important to develop a methodology to detect the malware
applications before installing it on the phone.

Actually, most current existing commercial anti-malware
solutions employ signature based detection due to its
implementation simplicity, but the major drawback of these
techniques is that they cannot detect new malwares [2].

On other hand, the other set of techniques depend on
monitoring the behavior of malware during the run time but
monitoring can be a very heavy consuming task also the
malware is detected after it was installed . [2], [5].

The most common mobile operating systems are Android,
Blackberry, iOS, Windows Phone and Symbian.

Statista [6] expected that Android is expected to account for
62.4 percent of global tablet shipments in 2017, thus taking
over as the market leader. Statista also expected that the
smartphones deploying Android as operating system are
forecast to reach around 1.5 billion units by 2018 [7]. Cisco
security report for 2014 finds 99% of all new mobile malware
is targeting Android [8]. Android's Google Play store has
officially reached over 1 million applications, and applications
download have also grown to over 50 billion [9]. Several
third-party Android Marketplaces exist without restricted
security rules for submit applications.

In this paper we extend our previous work in [1] by
proposed an effective approach of detecting malwares in
android smartphones before installing it, based on static code
analysis. It takes into account various features based on
permissions declared in AndroidManifest.xml file as well as
extracted methods and APIs from disassembled code from dex
file to be used as features for training machine learning
classifiers.

The rest of paper is structured in the following way: We
start in section II with a brief background on malware
detection techniques, in section III a survey of previous
relevant studies, in section IV the architecture of android
application, section V describes the methods used to collect

An Intelligent Methodology for Malware
Detection in Android Smartphones Based Static

Analysis
 Ahmed H. Mostafa, Marwa M. A. Elfattah and Aliaa A. A. Youssif

M

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 10, 2016

ISSN: 1998-4480 21

data , extract features and building the dataset, in sections VI
we describe the extracted permissions ,methods and APIs ,
section VII presents the experiments setup and the evaluation
measures. In section VIII discuss the classification results in
details and finally in section IX the conclusion.

II. MALWARE DETECTION BACKGROUND
Mainly, there are two categories of smartphones malware

detection techniques, which are detection techniques based on
static analysis and detection techniques based on dynamic
analysis [10]-[13]. The major difference between static and
dynamic analysis is how the data is acquired.

Static detection represents an approach of checking source
code or compiled code of applications before it gets executed.
It identifies malicious code by unpacking and disassembling
the application to extract some features. There exists several
works that apply static analysis such as [14]-[20].

On other hand, dynamic set of techniques identify malicious
behaviors after executing the application on an emulator or
controlled environment. Monitoring can be performed in cloud
systems. But, it is dependent on external server, which means
there can be server down problems and network congestion.
Also, there exists several works that apply dynamic analysis
such as [21]-[25].

Obviously, static based techniques are fast, flexible and
easy to be automated, which means, they are suitable for
mobile devices. Whereas, in dynamic based analysis the
monitoring can be a very heavy consuming task. Also, in
dynamic based analysis, the malware can change his behavior
during the run time and cannot be detected [10].

From other point of view, there are two main different
malware identification techniques which are anomaly-based
identification techniques and signature based identification
techniques. [10]

Anomaly-based identification attempts to model normal and
non-normal behaviors during a training phase. Anomaly
detection techniques have the potential to detect newfangled
malware. However, they are prone to detect rare legitimate
behaviors as malicious [12].

Signature-based identification aims at identifying known
malicious by means of predefined patterns of signatures. The
main benefit of signature detection lies in its accuracy
detecting well-known attacks [2], [10].

Static signature-based technique is very efficient and
reliable to identify known malwares; otherwise, they cannot
detect unknown malwares. Also, Signatures must be up-to-
date that lead to a massive amount of signatures. On other
hand, anomaly based techniques have the ability to detect
unknown malwares [10]-[13].

III. RELATED WORK
Several studies have been done in the field of Android

malware detection. As mentioned early, the main malware
detection techniques are dynamic and static techniques.

For dynamic techniques, the Crowdroid [22] and MADAM
[23] propose android malware detection by monitoring the

malware behavior through analyzing the application system
call. Adas, et al [26] proposed methods to extract network and
URL inspection feature and these methods based on cloud
computing platform,. Also, Marengereke, et al [27] is a cloud
based. Alterdroid [21] is a framework for malware dynamic
analysis, based on the notion of differential fault analysis. . On
other hand, for static analysis techniques, Sanz, Borja, et
al[17],[20] proposed a new method that, based on several
features that are extracted from the Android manifest file of
the legitimate applications. Also, Yerima [18] proposed
approach based on Bayesian classification models obtained
from static code analysis to detect android malware using
malware dataset from 49 android families .Gunjan Kapse [14]
proposed a method of detection of malware on Android based
on application features which make use of Permissions,
API calls, and Intent filters. Ming-Yang Su [15]proposed to
use the permission combinations of the application detect a
malware Sato, et al [16] proposed a method for Android
malware by using only manifest files to detect malware and
the proposed method extracts six types of information from
manifest files and uses them to detect Android malware.

IV. ANDROID APPLICATION
Android [28] is an open source OS built on Linux for

mobile devices.

Fig. 1 APK Architecture

Android applications are developed with Google Android

SDK [29] and written in Java language. The Android
application source code is compiled into .dex file. The dex file,
shared libraries and any other resources, including the
AndroidManifest.xml file that describes the App, are packaged
together into an APK (Android application package).

As shown in Fig. 1 the APK consist of folder res stores
icons, images, string/numeric/color constants, UI layouts,
menus, animations compiled into the binary. Folder assets
contains non-compiled resources META-INF stores the
signature of the app developer certificate to verify the third
party developer identity.

AndroidManifest.xml stores the meta-data such as package
name, permissions, definitions of one or more components like
Activities, Services, Broadcast Receivers or Content
Providers, minimum and maximum version support... etc

V. FEATURE EXTRACTION
This section mainly aims to describe the collecting and

building the dataset and the extraction process for features

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 10, 2016

ISSN: 1998-4480 22

from android application based on dimensionality reduction
technique that extracts a subset of new features from the
original set of features by means of some functional mapping
keeping as much information in the data as possible.

A. Collect Data
To conduct experiments, a dataset of real Android

applications and real malware in considered. In particular, an
initial dataset of 650 applications divided to 325 malware and
325 benign android applications is acquired. The malwares are
collected from Contagio Malware Dump [30] Android
Malware Dump [31] and MalShare [32].

 Malware applications represent more than 89 android
malware families [33] - [35] and it is listed in Table I. A
malware family is basically a collection of malware presenting
similar behaviour. Whereas, the benign applications cover all
android categories in Google play store [36].

Table I - Malware Families

Malware Family # Malware Family #
Airpush,StopSMS,Minimob 13 NotCompatible 1
CI4 SMS Bot 1 PJAPPS 15
Opfake aka 3 Plankton 26
Stiniter TGLoader 1 Repane 1
AVPass 1 Roidsec Sinpon 1
Backflash Crosate 1 Scavir 1
BadNews 1 Scipiex 1
BaseBridge 4 Simhosy 3
Beita 1 Skullkey 1
Carberp 2 SMSilence 2
Ccounterclank 6 SPPush 1
DougaLeaker(Dougalek) 6 Ssucl 2
DroidKungFu 4 SteeK Fatakr, fakelottery 19
Dropdialerab 2 Tascudap 1
Extension 2 Tigerbot-Spyera 1
fakeAV 9 Uracto 3
Fakebank 4 UsbCleaver 2
Fakedaum 1 Uten 1
Fakedefender 1 VDLOADER 2
FAKEINST 6 YZHC 2
FakeJobOffer 1 Zertsecurity 1
FakeMarket 1 Zitmo2012 7
FakeMart 3 Lotoor 2
Fakenotify 1 Boxer 1
Fakeplay 1 FakeTimer 2
FakeRegSMS 1 Tetus 4
Faketaobao 1 Android iBanking 3
FakeToken 1 Foncy 1
Fakeupdate 1 Adsms 1
FakeVertu 2 Arspam 1
finfisher_finspy 1 Cosha 1
GAMEX 1 DroidDream 1
GEINIMI 38 FakeAngry 1
Godwon 3 Fjcon 1
GoldDream 2 GGTracker 2
Jollyserv 1 GingerBreak 1
KMIN 47 HippoSMS 1
LeNa 4 Lien 1
Loozfon 2 MMarketPay 1
LUCKYCAT 1 Qicsomos 1
Malap 1 SMSspy 1
Moghava 1 Spitmo 1
MouaBad 1 Tapsnake 1
Nickyspy 1 Spayoo 1
Unclassified 15

B. Features extraction methodology
We focus on extracting features from manifest.xml file and

the disassembled dex code of the application which are
extracted from the application APK file. Those features are
extracted statically using python [37] script that is developed
based on AndroGuard APIs [38] and wxpython [39]. A python
script is developed to automate the extraction of the features
for data analyzing. The script is used to extract features from
all APK files at once without needing to analysis each apk file
alone. The developed script filters permissions, strings, and
APIs, methods and classes paths. All extracted features are
represented as sets of strings, then, they are saved in list
format or binary vector format to have a binary matrix and all
data saved in CSV files.

The developed script unpacks the APK files to classes.dex,
and the manifest file to binary format. Then, it converts the
manifest to xml file, where, all permissions used by the
application can be extracted, and, the dex file is disassembled
to extract the methods names and the path of APIs including
packages and classes. All features from manifest files are
extracted based on the following generic methodology:

VectorV contains all features (android system permissions
or methods, APIs or combination of both). For each
application there is features vector iV contains all features for
such application, where, the feature vector represents all
features. So, for each application ia in the Applications

set A there is binary vector },...,,,{ 321 ni vvvvV = where, n is
number of features, and,





=
else

v
v n

i ,0
,1 V in exist feature exxtracted if

- The variable C is the type of the applications to be
benign or malware where { }Benign , Malware ∈C

- The creating of matrix M process is described by
following algorithm :

Input: set A contain all apk files and vector V contain all
features (android system permissions or methods API or Both)
Output: matrix M contain all vectors iV

for each ia in A do

 Extract all features from ia and set it to set iS

 for each ij Ss ∈ do

 if Vs j ∈ do

 in Vv ∈ = 1
 else
 in Vv ∈ = 0
 end if
 end for
 Set iV in M
end for

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 10, 2016

ISSN: 1998-4480 23

C. Choosing informative features
A key idea behind selecting the most informative features is

to find a minimum set of features such that the resulting
probability distribution of the data classes is as close as
possible to the original distribution obtained using all features
and removing as much irrelevant and redundant information as
possible.

 Using the reduced set of features has additional benefits. It
reduces the number of features appearing in the discovered
patterns, which helps in making the patterns easier to be
understood. Further it enhances the classification accuracy and
learning runtime.

In the conducted experiments, the previously mentioned
methodology for feature extraction is applied to produce a
matrix M, which contains the binary vectors of the features
from all collected applications.

Then, to select the most informative feature set, the feature
selection GainRatio are used to select the most informative
features then rank the features from highest to lowest feature
using ranking algorithm then drop or remove all features have
zero score to have finally an ordered set of features.

 The Gain Ratio score is calculated for feature vectors based
on the following formula [40], [41]:

() () ()
)(

)|(,
n

n
n vH

vCHCHvCGainRatio −
= (1)

 Where H is the information entropy, Y and X are
random variables and P is the probability.

() () ()ibi ii ii xPxPxIxPXH log)()(∑∑ −== (2)

 Where the conditional entropy of two events X and Y

() ()∑= ji ji

j
ji yxP

yP
yxPYXH

, ,
)(

log,)|((3)

VI. FEATURES
To classify smartphone applications as malicious or benign,

it is widely required for each application to extract its features
which help in identifying the application as malware or benign
application. Those extracted features are required to be
informative to produce an accurate decision.

In this section, we describe the features which are proposed
to be extracted by applying the discussed features extraction
and filtering methodology.

A. Android Permission
Android permissions control the access to sensitive

resources and functionalities. Permissions allow an application
to access potentially dangerous API functionality. Many
applications require several permissions to do its function
properly. Also, android systems allow developer to create his
own permissions that allow other application to access some
activities without developed it again. All these permissions
whether android system permission and user permission must
be listed explicitly in the application’s Manifest.xml file, and

each application must have an android Manifest.xml in its root
directory [42], [43].

For example, applications that want to connect to internet
need to use the permission INTERNET, to call phone
CALL_PHONE permission is used, to send SMS message
SEND_SMS permission is used, to access camera CAMERA
permission is used and so on.
Using the permissions as features for machine learning
classifiers can help to detect the malware before the
installation. So, analyzing the android applications manifest
files to identify the permission set requested by that
application can considered as an informative methodology for
anomaly based feature extraction in static manner.

First, we extracted all permissions from all of the collected
dataset whether android system permissions or permissions
developed by developer of applications, we noted, that the
benign application use 1141 permissions and malware
application use 4882 permissions. Approximately, malware
applications use nearly three times permissions more than
benign applications, that means malwares actually use
permissions to access functions the benign applications not
use.

We focused on the android system permissions ,so we
found that android 5.0 Lollipop with API level-21 [43],[44]
provide 151 android system permissions , according to
considering all of android system permissions as a feature set
will produce an enormous feature vector for each application.
So it is required to reduce the number of the selected features.

For reducing the feature set, a preprocessing step has been
performed, which is removing all zero-frequency-permissions
in the binary matrix M . The permissions that its frequency is
zero are those which are not used by any malware or benign
applications, the number of features were reduced to 114
features.

Then, we calculated GainRatio score for each permission.
All permissions that its score is zero are removed. A set of
ordered features (permissions) from highest to lowest gainratio
score have been produced as shown Fig. 2.

B. Methods and APIs
API refer to application programming interface, it consists

of packages, classes and methods to help developer to develop
applications. Android provides developer with APIs to
develop android applications, and developer also can use
externals APIs such as others Java and Jason APIs.

Android applications are developed in Java and compiled
into optimized bytecode for the Dalvik virtual machine. This
bytecode can be disassembled and provides information about
packages, classes, methods, parameters and data used in the
application.

 As mentioned before we developed python script based on
Androguard APIs to extract information from dex files, the
script extracts both the method name and its class path. The
extracted methods and its class path are concatenated in one
string separated by semi coma, as, for example:

“value;Landroid/annotation/SuppressLint;”
 Where “value”is the method name or API Call and

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 10, 2016

ISSN: 1998-4480 24

“Landroid/annotation/SuppressLint” is the class path and
“SuppressLint” is the class name where the “SuppressLint”
belongs to the package android.annotations.

 We extracted all the methods names and its associated
class paths from all malware and we found that the number of
extracted methods and its class paths are more than 911967
string. Actually, there are a lot of repetitions. So, we
calculated the frequency for each method associate with its
class path. The number of features has been more than 16356
methods and their class paths. We selected the top 500
features with top frequency.
The feature extraction methodology described before is
applied for each application to build the binary matrix M of
feature vectors. Then, the gainratio for each feature is
calculated, and, the features with zero weight are removed to
have only 346 features ranked from highest to lowest from
16356 features.

Fig.2 Top 58 ranked permissions

Fig.3 30 ranked methods and APIs

We noted that the external APIs have more informative
values than the Android APIs. Therefore in this study we
focused in the external APIs more than Android APIs - Fig. 3
show only 30 ranked features.

C. Combination of features
We combined the reduced permissions and the APIs methods
features, and calculated the gainratio for each feature then
ranking the gainratio scores from the highest to lowest to have
an ordered list consist of 404 features based on combination of
permissions, methods and its class paths.

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 10, 2016

ISSN: 1998-4480 25

VII. EXPERIMENTS SETUP
In our experiments, the different feature sets obtained from
previously mentioned feature extraction techniques are
categorized using more than one classifier from WEKA tool
[45].

A. Classifiers
In the conducted experiments, thirteen classifiers from

WEKA have been used to choose the best features set. Where,
some of classifiers were tree based classifiers, such as, C4.5
algorithm (J48) ExtraTree , J48Consolidated(J48C) ,
RandomForest Tree(RFT), RandomTree (RT) and best-first
decision tree (BFT), some of classifiers were mathematical
based classifiers, such as feed forward neural network
(MultilayerPerceptron MLP) with .001 learning rate , Support
vector machine (SVM) , Radial Basis Function Network
(RBF) , stochastic gradient descent (SGD),Logistic Regression
(Log), and some of classifiers were lazy based classifiers, such
as, K- nearest neighbours classifier (IBk) and KStar .

B. Learning and Testing Options
WEKA has different mechanisms to divide the experimental
dataset into training dataset and testing dataset testing that is
used to train and test the classifiers models. The first
methodology is k-cross validation [46]. In k-fold cross-
validation, the dataset is randomly partitioned into k equal size
subsamples. One subsample is used as the validation data for
testing the model, and the remaining k-1 subsamples are used
as training data. Then repeated k times, with each of the k
subsamples used exactly once as the validation data. The k
results from the folds can then be averaged to produce a single
estimation. In the conducted experiments, two k values have
been chosen, k=10 and k=3 folds.

Another mechanism is simply to divide dataset into two
portions in a random manner. Here, 66% of the original
dataset are randomly chosen for training, and the remaining
34% of the data are used for testing, the last testing option is
using same data for training and this option useful to give us
an intuition on how the selected features are good to classify
the selected data but it does not have any indication of how the
classification model will perform on new data.

This study will choose the best features sets combined with
machine learning classifiers based on the results of testing
options for the classification models based on this order of the
testing options first testing option with 10 folds will be the
main testing option to distinguish between classification
models results, then 3 fold, then split data to 66% and 34 %
and in the last option is using same data for training and
testing

C. Measure of classifiers
The evaluation was performed by following measures [46]:

()
()FNFPTNTP

TNTPAccuracy
+++

+
= (4)

The Accuracy is the percentage of predictions that is
correct, where TN is the number of benign applications

correctly classified, TP is the number of malware cases
correctly classified, FP is the number of benign applications
incorrectly detected as malware, and FN is the number of
malware incorrectly classified as benign applications .

FN)+(TP
TP =RateTP (5)

TP Rate The percentage of positive labeled instances that
were predicted as positive.

N
FP =Rate FP (6)

FP Rate is the percentage of positives cases that were
incorrectly classified as negative, and where the N is the
number of all benign.
ROC curve is obtained by plotting the TP Rate (TPR) against
the FP Rate (FPR). An ROC curve plots the TPR against FPR
for every possible detection cut-off. The total area under the
ROC curve (AUC) indicates the classifier’s predictive power.
If the AUC value is 1, that implies perfect classification. If the
AUC value is close to 1, that denotes good classier predictive
power [47].

D. Extraction processing Time
To analyze the time for extracting different set of features,

the experiments for extracting and building the dataset were
performed on a desktop computer with Intel core i5 and 4GB
of RAM, The operating system of this machine is Microsoft
Windows 7 and the experiment is running on Ubuntu-Linux
installed on virtual machine Oracle VM VirtualBox.

Table II represents the average extraction time for the
features of the three feature models for, where, Model 1
represents the features set based on permissions, Model 2
represents the features based on methods and APIs and the
Model 3 represents the features set based on the combination
of features.

It is widely noted from table II that the average extraction
time for the models, which is based on API methods, is larger
than the model which is based on permissions features only.

 Table II Features extraction time

 Model 1 Model 2 Model 3
Type of features Permissions API methods Combination
 Features number 58 346 404
Extraction time
for 325 malware

10.37 sec

972.16 sec

978.47 sec

Average 0.0319 sec 2.9912 sec 3.0106 sec
extraction time
for 325 benign

9.24 sec

2100.23 sec

2115.26 sec

Average 0.02843 sec 6.4622 sec 6.5084 sec

Also, as noted, the extraction time depend on the amount of

data extracted from the Mainfeast.xml file and the dissemble
dex files, where, the number of permission extracted from
Mainfeat.xml files for benign is 1141 permission and for
malware is 4882 permission, while the number of extracted
methods and its class paths as one sting from malware is
911967 string, and for benign is 1185635 string.

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 10, 2016

ISSN: 1998-4480 26

VIII. EXPERIMENTS RESULTS
In this section, we show the classification accuracy results

in details for each of the three previously mentioned models.

A. Reduced Permission

Fig. 4 Accuracy for features based permissions

From Fig. 4, we can note that the best accuracy results for

reduced permissions as features combined with machine
learning classifiers are 87.2308% with testing option 10 folds
using MLP as classifier ,with 3 folds is 86.9231% ,and using
34%of data for testing is 89.5928% also using MLP as
classifier. While, with training data as testing data is
92.3077% using classifiers RT, Extra tree and IBk, but the
testing using same training data give us how this features are
good for this data but not give any induction about future or
new data.

As mentioned earlier, an AUC value closer to 1 denotes
better classifier predictive power and it can be observed from
Fig. 5 AUC for reduced permission combined with MLP
classifier using 10 folds as testing is 0.9143 of area under the
ROC curve.

Fig. 5 Roc Curve –reduced permission 10 folds

so we can conclude that the best accuracy result obtained by

using reduced permissions as features is 87.2308% and with
weighted averages for FP Rate and TP Rate are 0.128, 0.872
respectively

B. Methods and APIs
From Fig. 6, we can note that, the best accuracy results for

Methods and APIs as features combined with machine
learning classifiers are 74.9231 % for testing option 10 folds
using RFT classifier, and with testing option 3 folds is
74.9231 % using RFT and Log classifiers, and with testing
with 34% of data is 76.9231 % with all classifiers expect RBF
and RFT are 76.4706 % and with testing using same data is
74.9231 with all classifiers expect the SVM.

Fig. 6 Accuracy for features based methods and APIs

It can be observed from the Fig. 7 that represents the ROC

curve for Methods and APIs as features combined with RFT
using 10 folds that the curve is going away from the left-hand
border that represent the true positive rate also, also the AUC
is 0.784 of area under the ROC curve, so we can conclude that
the features based methods an APIs only give low accuracy
and high false positive rate.

Fig. 7 ROC Curve –methods, APIs 10 folds

So from comparing the results, we can conclude that the

best accuracy based on methods and APIs as features is
74.9231 % and with weighted averages for FP Rate, and TP
Rate 0.251, 0.749 respectively

C. Combination between features
We can note from Fig. 8 that , the best accuracy results for

combination between features reduced permissions methods
and APIs combined with machine learning classifiers are for
testing option 10 folds is 91.5385 % using RBF classifier
,and with 3 folds is 91.2308 %% with RBF , KStar and BFT
classifiers ,and with testing with 34% of data the best accuracy
result is 92.3077 % with RBF and KStar while with testing
using same data, the best accuracy result is 96.7692 % with
RT and IBK classifiers , from comparing the results we can
note that the best accuracy is 96.7692 % but the testing using
same training data give us how this features are good for this
data but not give any induction about new data , also we can
note that the combined features combined with RBF classifier
using 10 folds , 3folds and 34% testing option give higher
accuracy results than using combination features with others
classifiers especially RT and IBK classifiers.

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 10, 2016

ISSN: 1998-4480 27

Fig. 8 Accuracy for combination features

.
Also the ROC curve in Fig. 9 show that the area under the

curve is 0.953 for the combination features with RBF
classifier using 10 folds ,we can note form the Fig.9 that the
curve follows and closer to the left-hand border and then the
top border of the ROC space, that mean more accurate the test.

Fig. 9 ROC Curve – Combination 10 folds

So we can conclude that the best accuracy result obtained by

using the combination of features, the reduced permissions,
Methods and APIs is 91.5385 % and with weighted averages
for FP Rate and TP Rate 0.085, 0.915 respectively.

D. Comparing between best results
The comparison between results obtained from the three

models of feature extractions is shown in Fig. 10 and table III
 The figure shows that the highest accuracy, which is

91.5385 % with high TP rate 0.915, high AUC value 0.953,
and the lowest FP rate 0.085, belongs to the ordered features
set based on the combination of features with Radial basis
function (RBF) as machine learning classifier. While, coming
in the second place is the ordered features set based on
reduced permissions combined with MultilayerPerceptron as
machine learning classifier with high detection accuracy
87.2308%, high TP rate 0.872, high AUC value 0.9143 and
low FP rate 0.128.

Table III –AUC Comparison

Features Permissions Methods,APIs Combination
AUC 0.9143 0.784 0.953

Fig. 10 Comparison for Classifiers Accuracy for different features

sets

 Although as shown in table II the features set for model 3
gives better result than features set for model 1, the extraction
time for features of model 3 is larger than the extraction time
for features of model 1. Where, the extraction time for features
of model 3 is ranged between 3.0106 and 6.5084 seconds per
application, while the extraction time for features of model 1
is ranged between 0.02843 and 0.0319 seconds per application
as mentioned early in table II. That means, models based on
reduced permissions features will be faster, but with lower
accuracy.

IX. CONCLUSION
In this paper, we have proposed an effective approach of

detecting malwares before installing it using static code
analysis. It takes into account various features based on
permissions declared in AndroidManifest.xml file and
methods and APIs used in the applications. We have extracted
the features from 650 application divided into 325 for malware
representing 89 malware families and 325 benign applications.

The applied experiments concluded that models based on
using reduced permissions as feature set is faster than other
models with average extraction time ranged between 0.02843
and 0.0319 seconds per application and with AUC value
0.9143 and classification accuracy 87.2308%. While, models
based on using a combination between permissions and API
methods as a feature set is more accurate in classification with
AUC value 0.953 and classification accuracy 91.5385%, but it
need 3.0106 and 6.5084 seconds per application for extract
features so it consumes more time to extract the needed
features.

ACKNOWLEDGMENT
We would to thanks everyone help us to complete this

research and i would to thanks my supervisors Prof. Aliaa and
Dr. Marwa for their excellent guidance.

REFERENCES
[1] Ahmed H. Mostafa, Marwa M. A. Elfattah and Aliaa A. A. Youssif.

"Reduced Permissions Schema for Malware Detection in Android
Smartphones". In Proc. Recent Advances in Computer Science, 19th
Int. Conf. on Circuits, Systems, Communications and Computers (CSCC
2015), July 16-20, 2015, Zakynthos Island, Greece,, ISBN: 978-1-
61804-320-7, pp. 406-413

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 10, 2016

ISSN: 1998-4480 28

[2] Faruki, P.; Bharmal, A.; Laxmi, V.; Ganmoor, V.; Gaur, M.S.; Conti,
M.; Rajarajan, M., "Android Security: A Survey of Issues, Malware
Penetration, and Defenses," Communications Surveys & Tutorials,
IEEE , vol.17, no.2, pp.998,1022, Secondquarter 2015

[3] Smartphone Users Worldwide Will Total 1.75 Billion in 2014 [Online].
Available: http://www.emarketer.com/Article/Smartphone-Users-
Worldwide-Will-Total-175-Billion-2014/1010536

[4] Mobile Application Futures 2013-2017 [Online]. Available:
http://www.portioresearch.com/en/mobile-industry-reports/mobile-
industry-research-reports/mobile-applications-futures-2013-2017.aspx

[5] Skovoroda, A.; Gamayunov, D., "Review of the Mobile Malware
Detection Approaches," Parallel, Distributed and Network-Based
Processing (PDP), 2015 23rd Euromicro International Conference on ,
vol., no., pp.600,603, 4-6 March 2015

[6] Worldwide market share forecast of smartphone operating system from
2010 to 2015 [Online]. Available:
http://www.statista.com/statistics/266970/market-share-forecast-of-
smartphone-operating-systems-from-2010-to-2015/

[7] Global Smartphone unit shipments forecast by operating system 2014
and 2018 [Online]. Available :
http://www.statista.com/statistics/309448/global-smartphone-shipments-
forecast-operating-system/

[8] Cisco: 2014 Cisco Annual Security Report [Online]. Available:
http://www.cisco.com/web/offers/lp/2014-annual-security-
report/index.html

[9] Android's Google Play beats App Store with over 1 million apps, now
officially largest [Online]. Available:
http://www.phonearena.com/news/Androids-Google-Play-beats-App-
Store-with-over-1-million-apps-now-officially-largest_id45680.

[10] Abdelfattah Amamra, Chamseddine Talhi, and Jean-Marc Robert,”
Smartphone malware detection: From a survey towards taxonomy”. In
Malicious and Unwanted Software (MALWARE), 2012 7th
International Conference on, pages 79–86. IEEE, 2012.

[11] Mariantonietta La Polla, Fabio Martinelli, and Daniele Sgandurra,” A
survey on security for mobile devices” Communications Surveys &
Tutorials, IEEE, 15(1):446–471, 2013.

[12] Suarez-Tangil, Guillermo, et al. "Evolution, detection and analysis of
malware for smart devices." Communications Surveys & Tutorials,
IEEE 16.2 (2014): 961-987

[13] Yan Ma and Mehrdad Sepehri Sharbaf. “Investigation of static and
dynamic android anti-virus strategies”. In Information Technology:
New Generations (ITNG), 2013 Tenth International Conference on,
pages 398–403 . IEEE, 2013

[14] Gunjan Kapse et al, Detection of Malware on Android based on
Application Features , (IJCSIT) International Journal of Computer
Science and Information Technologies, Vol. 6 (4) , 2015, 3561-3564

[15] Ming-Yang Su; Wen-Chuan Chang, "Permission-based malware
detection mechanisms for smart phones," Information Networking
(ICOIN), 2014 International Conference on , vol., no., pp.449,452, 10-
12 Feb. 2014

[16] Sato, Ryo, Daiki Chiba, and Shigeki Goto. "Detecting android malware
by analyzing manifest files." Proceedings of the Asia-Pacific Advanced
Network36 (2013): 23-31.

[17] Sanz, Borja, Igor Santos, Xabier Ugarte-Pedrero, Carlos Laorden, Javier
Nieves, and Pablo Garcia Bringas. "Instance-based Anomaly Method for
Android Malware Detection." In SECRYPT, pp. 387-394. 2013.

[18] Yerima, Suleiman Y., Sakir Sezer, Gavin McWilliams, Igor Muttik. "A
new android malware detection approach using bayesian classification."
Advanced Information Networking and Applications (AINA), 2013 IEEE
27th International Conference on. IEEE, 2013.

[19] Vala, Sarga and Benda. "Security Reverse Engineering of Mobile
Operating Systems: A Summary.” WSEAS, Recent Advances in
Computer science. Proceedings of the 17th International Conference on
computers. Rhodes Island, Greece. 2013.

[20] Sanz, Borja, et al. "Puma: Permission usage to detect malware in
android." International Joint Conference CISIS’12-ICEUTE´ 12-SOCO´
12 Special Sessions. Springer Berlin Heidelberg, 2013.

[21] Suarez-Tangil, G.; Tapiador, J.E.; Lombardi, F.; Di Pietro, R.,
"Alterdroid: Differential Fault Analysis of Obfuscated Smartphone
Malware," Mobile Computing, IEEE Transactions on , vol.PP, no.99,
pp.1,1,2015

[22] Burguera, Iker, Urko Zurutuza, and Simin Nadjm Tehrani. "Crowdroid:
behavior-based malware detection system for android." Proceedings of
the 1st ACM workshop on Security and privacy in smartphones and
mobile devices. ACM, 2011.

[23] Dini, Gianluca, et al. "Madam: a multi-level anomaly detector for
android malware." Computer Network Security. Springer Berlin
Heidelberg, 2012. 240-253.

[24] Naqliyah BT Zainuddin, Mohd.Faizal Bin Abdollah, and Shahrin Bin
Sahib. "Framework of Analysis Technique for Abnormal Behavior in
Mobile Application (FATABMA).", WSEAS

[25] Naqliyah BT Zainuddin , " A Study on Android-A Proposal for Cost-
sensitive Based Intrusion Response System based
IDS",WSEAS,Advances in Remote Sensing, Finite Differences and
Information Security , ISBN: 978-1-61804-127-2 , WSEAS

[26] Adas, Husam, Sachin Shetty, and Waled Tayib. "Scalable detection of
web malware on smartphones." In Information and Communication
Technology Research (ICTRC), 2015 International Conference on, pp.
198-201. IEEE, 2015.

[27] Marengereke, Tendai Munyaradzi, and K. Sornalakshmi. "Cloud based
security solution for android smartphones." Circuit, Power and
Computing Technologies (ICCPCT), 2015 International Conference on.
IEEE, 2015.

[28] Android Operating System [Online]. Available :
https://www.android.com/

[29] Android SDK [Online]. Available :
http://developer.android.com/sdk/index.html

[30] Contagio Mobile Mini Malware Dumb [Online]. Available :
http://contagiominidump.blogspot.com/

[31] Android Malware Dump [Online]. Available:
http://androidmalwaredump.blogspot.com/

[32] MalShare [Online]. Available : http://malshare.com/
[33] Cooper, Vanessa N., Hossain Shahriar, and Hisham M. Haddad. "A

Survey of Android Malware Characterisitics and Mitigation
Techniques." Information Technology: New Generations (ITNG), 2014
11th International Conference on. IEEE, 2014.

[34] Le Thanh, Hieu. "Analysis of Malware Families on Android Mobiles:
Detection Characteristics Recognizable by Ordinary Phone Users and
How to Fix It." Journal of Information Security 4.04 (2013): 213.

[35] Current Android Malware [Online] Available :
http://forensics.spreitzenbarth.de/android-malware/

[36] Google Play store [Online]. Available : https://play.google.com/store
[37] Python 2.7 [Online]. Available :

https://www.python.org/download/releases/2.7/
[38] Androguard Project [Online]. Available :

https://code.google.com/p/androguard/
[39] wxpython [Online] Available : http://www.wxpython.org/
[40] Karegowda, Asha Gowda, A. S. Manjunath, and M. A. Jayaram.

"Comparative study of attribute selection using gain ratio and correlation
based feature selection." International Journal of Information
Technology and Knowledge Management 2.2 (2010): 271-277.

[41] T. M. Cover, J. A. Thomas, Elements of Information Theory, Ed.
Wiley, 1991.

[42] Android system Permissions [Online]. Available :
http://developer.android.com/guide/topics/security/permissions.html

[43] List of Android Manifest Permissions [Online]. Available :
http://developer.android.com/reference/android/Manifest.permission.htm
l

[44] Android Lollipop 5 [Online]. Available :
http://www.android.com/versions/lollipop-5-0/

[45] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, Ian H. Witten (2009); The WEKA Data Mining Software:
An Update; SIGKDD Explorations, Volume 11, Issue 1.

[46] Kohavi, Ron. "A study of cross-validation and bootstrap for accuracy
estimation and model selection." In Ijcai, vol. 14, no. 2, pp. 1137-1145.
1995.

[47] Powers, David Martin. "Evaluation: from precision, recall and F-
measure to ROC, Informedness, Markedness and Correlation." (2011).

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 10, 2016

ISSN: 1998-4480 29

http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536
http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536
http://www.portioresearch.com/en/mobile-industry-reports/mobile-industry-research-reports/mobile-applications-futures-2013-2017.aspx
http://www.portioresearch.com/en/mobile-industry-reports/mobile-industry-research-reports/mobile-applications-futures-2013-2017.aspx
http://www.statista.com/statistics/266970/market-share-forecast-of-smartphone-operating-systems-from-2010-to-2015/
http://www.statista.com/statistics/266970/market-share-forecast-of-smartphone-operating-systems-from-2010-to-2015/
http://www.statista.com/statistics/309448/global-smartphone-shipments-forecast-operating-system/
http://www.statista.com/statistics/309448/global-smartphone-shipments-forecast-operating-system/
http://www.cisco.com/web/offers/lp/2014-annual-security-report/index.html
http://www.cisco.com/web/offers/lp/2014-annual-security-report/index.html
http://www.phonearena.com/news/Androids-Google-Play-beats-App-Store-with-over-1-million-apps-now-officially-largest_id45680
http://www.phonearena.com/news/Androids-Google-Play-beats-App-Store-with-over-1-million-apps-now-officially-largest_id45680
https://www.android.com/
http://developer.android.com/sdk/index.html
http://contagiominidump.blogspot.com/
http://androidmalwaredump.blogspot.com/
http://malshare.com/
http://forensics.spreitzenbarth.de/android-malware/
https://play.google.com/store
https://www.python.org/download/releases/2.7/
https://code.google.com/p/androguard/
http://www.wxpython.org/
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://www.android.com/versions/lollipop-5-0/

