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Abstract— Recently, a lot of mobile phone users are rapidly 

switching to smartphones, and, many users download mobile 
applications without any thought of security. Therefore, smartphones 
are interesting target for malware, especially with Android devices.  
So, it is too important to use a methodology to detect the malware 
applications before installing it on the phones. 

 In this paper we propose an effective methodology to detect 
Android malware using static code analysis based models. The 
proposed models are built to extract features relevant to malware 
based on extracted permissions from AndroidManifest.xml file as 
well as extracted methods and APIs from disassembled code to be 
used as features for training machine learning classifiers. 

 
Keywords— Android, Malware Detection, Machine learning, 

Smartphones, Pattern Recognition.  

I. INTRODUCTION 
alware is an abbreviation for two words malicious and 
software. Actually, it is software that included in the 

computer system for malicious purposes, without any 
knowledge from the computer owner. It may be used to collect 
important information, or gain access to computer systems. 
The seriousness of malicious software ranges from hurt the 
users with annoying Ads to steal important data such as credit 
card numbers and format the phone's memory. 

Smartphones have become pervasive due to the availability 
of office applications, Internet, games, vehicle guidance using 
location-based services apart from conventional services like 
voice calls, SMS and multimedia services. [2] 
A lot of mobile phone users are rapidly switching to 
smartphones. According to eMarketer [3], it is expected that 
around 49% of the mobile phone users globally are likely to 
use smartphones by 2017.  

Many users download mobile applications without any 
thought of security. Whereas, with exponentially increasing in 
downloading mobile application, according to PortioResearch 
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[4] downloading of mobile applications will continue to grow 
to exceed 200 billion applications by the end of year 2017. 
The number of markets which allow users to download 
applications are increasing and the number of non-official 
markets are also increasing, but non-official market do not 
impose security measures on the phone applications that are 
being uploaded by developers so many hackers upload 
malicious applications to these markets. Therefore, it is 
important to develop a methodology to detect the malware 
applications before installing it on the phone. 

Actually, most current existing commercial anti-malware 
solutions employ signature based detection due to its 
implementation simplicity, but the major drawback of these 
techniques is that they cannot detect new malwares [2].   

On other hand, the other set of techniques depend on 
monitoring the behavior of malware during the run time but 
monitoring can be a very heavy consuming task also the 
malware is detected after it was installed . [2], [5].    

The most common mobile operating systems are Android, 
Blackberry, iOS, Windows Phone and Symbian.  

Statista [6] expected that Android is expected to account for 
62.4 percent of global tablet shipments in 2017, thus taking 
over as the market leader. Statista also expected that the  
smartphones deploying Android as operating system are 
forecast to reach around 1.5 billion units by 2018 [7]. Cisco 
security report for 2014 finds 99% of all new mobile malware 
is targeting Android [8]. Android's Google Play store has 
officially reached over 1 million applications, and applications 
download have also grown to over 50 billion [9]. Several 
third-party Android Marketplaces exist without restricted 
security rules for submit applications.  

In this paper we extend our previous work in [1] by 
proposed an effective approach of detecting malwares in 
android smartphones before installing it, based on static code 
analysis. It takes into account various features based on 
permissions declared in AndroidManifest.xml file as well as 
extracted methods and APIs from disassembled code from dex 
file to be used as features for training machine learning 
classifiers.  

The rest of paper is structured in the following way: We 
start in section II with a brief background on malware 
detection techniques, in section III a survey of previous 
relevant studies, in section IV the architecture of android 
application,  section V describes  the  methods used to collect 
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data , extract features and building the dataset, in sections VI 
we describe the extracted  permissions ,methods and APIs  , 
section VII  presents the experiments setup and the  evaluation  
measures. In section VIII discuss the classification results in 
details and finally in section IX the conclusion. 

II. MALWARE DETECTION BACKGROUND 
Mainly, there are two categories of smartphones malware 

detection techniques, which are detection techniques based on 
static analysis and detection techniques based on dynamic 
analysis [10]-[13]. The major difference between static and 
dynamic analysis is how the data is acquired. 

Static detection represents an approach of checking source 
code or compiled code of applications before it gets executed. 
It identifies malicious code by unpacking and disassembling 
the application to extract some features. There exists several 
works that apply static analysis such as [14]-[20]. 

On other hand, dynamic set of techniques identify malicious 
behaviors after executing the application on an emulator or 
controlled environment. Monitoring can be performed in cloud 
systems. But, it is dependent on external server, which means 
there can be server down problems and network congestion. 
Also, there exists several works that apply dynamic analysis 
such as [21]-[25]. 

Obviously, static based techniques are fast, flexible and 
easy to be automated, which means, they are suitable for 
mobile devices. Whereas, in dynamic based analysis the 
monitoring can be a very heavy consuming task. Also, in 
dynamic based analysis, the malware can change his behavior 
during the run time and cannot be detected [10].   

From other point of view, there are two main different 
malware identification techniques which are anomaly-based 
identification techniques and signature based identification 
techniques. [10] 

Anomaly-based identification attempts to model normal and 
non-normal behaviors during a training phase. Anomaly 
detection techniques have the potential to detect newfangled 
malware. However, they are prone to detect rare legitimate 
behaviors as malicious [12]. 

Signature-based identification aims at identifying known 
malicious by means of predefined patterns of signatures. The 
main benefit of signature detection lies in its accuracy 
detecting well-known attacks [2], [10]. 

Static signature-based technique is very efficient and 
reliable to identify known malwares; otherwise, they cannot 
detect unknown malwares. Also, Signatures must be up-to-
date that lead to a massive amount of signatures. On other 
hand, anomaly based techniques have the ability to detect 
unknown malwares [10]-[13]. 

III. RELATED WORK 
Several studies have been done in the field of Android 

malware detection. As mentioned early, the main malware 
detection techniques are dynamic and static techniques.  

For dynamic techniques, the Crowdroid [22] and MADAM 
[23] propose android malware detection by monitoring the 

malware behavior through analyzing the application system 
call. Adas, et al [26] proposed methods to extract network and 
URL inspection feature and these methods based on cloud 
computing platform,. Also, Marengereke, et al [27] is a cloud 
based. Alterdroid [21] is a framework for malware dynamic 
analysis, based on the notion of differential fault analysis. . On 
other hand, for static analysis techniques, Sanz, Borja, et 
al[17],[20] proposed a new method that, based on several 
features that are extracted from the Android manifest file of 
the legitimate applications. Also, Yerima [18] proposed 
approach based on Bayesian classification models obtained 
from static code analysis to detect android malware using 
malware dataset from 49 android families .Gunjan Kapse [14] 
proposed a method of detection of malware on Android based 
on  application  features  which  make  use  of Permissions,  
API  calls,  and  Intent filters. Ming-Yang Su [15]proposed to 
use the  permission combinations  of  the application detect  a 
malware Sato, et al [16] proposed a method for Android 
malware by using only manifest files to detect malware and 
the proposed method extracts six types of information from 
manifest files and uses them to detect Android malware.   

IV. ANDROID APPLICATION 
Android [28] is an open source OS built on Linux for 

mobile devices. 
 

 
Fig. 1 APK Architecture  

 
Android applications are developed with Google Android 

SDK [29] and written in Java language. The Android 
application source code is compiled into .dex file. The dex file, 
shared libraries and any other resources, including the 
AndroidManifest.xml file that describes the App, are packaged 
together into an APK (Android application package). 

As shown in Fig. 1 the APK consist of folder res stores 
icons, images, string/numeric/color constants, UI layouts, 
menus, animations compiled into the binary. Folder assets 
contains non-compiled resources META-INF stores the 
signature of the app developer certificate to verify the third 
party developer identity. 

AndroidManifest.xml stores the meta-data such as package 
name, permissions, definitions of one or more components like 
Activities, Services, Broadcast Receivers or Content 
Providers, minimum and maximum version support... etc 

V.  FEATURE EXTRACTION  
This section mainly aims to describe the collecting and 

building the dataset and the extraction process for features 

 

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 10, 2016

ISSN: 1998-4480 22



 

 

from android application based on dimensionality reduction 
technique that extracts a subset of new features from the 
original set of features by means of some functional mapping 
keeping as much information in the data as possible. 

A. Collect Data 
To conduct experiments, a dataset of real Android 

applications and real malware in considered. In particular, an 
initial dataset of 650 applications divided to 325 malware and 
325 benign android applications is acquired. The malwares are 
collected from Contagio Malware Dump [30] Android 
Malware Dump [31] and MalShare [32]. 

 Malware applications represent more than 89 android 
malware families [33] - [35] and it is listed in Table I. A 
malware family is basically a collection of malware presenting 
similar behaviour. Whereas, the benign applications cover all 
android categories in Google play store [36]. 

 
Table I - Malware Families 

Malware Family # Malware Family # 
Airpush,StopSMS,Minimob 13 NotCompatible 1 
CI4 SMS Bot 1 PJAPPS 15 
Opfake aka   3 Plankton 26 
Stiniter  TGLoader 1 Repane 1 
AVPass 1 Roidsec  Sinpon 1 
Backflash  Crosate 1 Scavir 1 
BadNews 1 Scipiex 1 
BaseBridge 4 Simhosy 3 
Beita 1 Skullkey 1 
Carberp 2 SMSilence 2 
Ccounterclank 6 SPPush 1 
DougaLeaker(Dougalek) 6 Ssucl 2 
DroidKungFu 4 SteeK Fatakr, fakelottery 19 
Dropdialerab 2 Tascudap 1 
Extension 2 Tigerbot-Spyera 1 
fakeAV 9 Uracto 3 
Fakebank 4 UsbCleaver 2 
Fakedaum 1 Uten 1 
Fakedefender 1 VDLOADER 2 
FAKEINST 6 YZHC 2 
FakeJobOffer 1 Zertsecurity 1 
FakeMarket 1 Zitmo2012 7 
FakeMart 3 Lotoor 2 
Fakenotify 1 Boxer 1 
Fakeplay 1 FakeTimer 2 
FakeRegSMS 1 Tetus 4 
Faketaobao 1 Android iBanking 3 
FakeToken 1 Foncy 1 
Fakeupdate 1 Adsms 1 
FakeVertu 2 Arspam 1 
finfisher_finspy 1 Cosha 1 
GAMEX 1 DroidDream 1 
GEINIMI 38 FakeAngry 1 
Godwon 3 Fjcon 1 
GoldDream 2 GGTracker 2 
Jollyserv 1 GingerBreak 1 
KMIN 47 HippoSMS 1 
LeNa 4 Lien 1 
Loozfon 2 MMarketPay 1 
LUCKYCAT 1 Qicsomos 1 
Malap 1 SMSspy 1 
Moghava 1 Spitmo 1 
MouaBad  1 Tapsnake 1 
Nickyspy 1 Spayoo 1 
Unclassified  15   

B. Features extraction methodology  
We focus on extracting features from manifest.xml file and 

the disassembled dex code of the application which are 
extracted from the application APK file. Those features are 
extracted statically using python [37] script that is developed 
based on AndroGuard APIs [38] and wxpython [39]. A python 
script is developed to automate the extraction of the features 
for data analyzing. The script is used to extract features from 
all APK files at once without needing to analysis each apk file 
alone. The developed script filters permissions, strings, and 
APIs, methods and classes paths. All extracted features are 
represented as sets of strings, then, they are saved in list 
format or binary vector format to have a binary matrix and all 
data saved in CSV files.  

The developed script unpacks the APK files to classes.dex, 
and the manifest file to binary format. Then, it converts the 
manifest to xml file, where, all permissions used by the 
application can be extracted, and, the dex file is disassembled 
to extract the methods names and the path of APIs including 
packages and classes. All features from manifest files are 
extracted based on the following generic methodology:  

VectorV contains all features (android system permissions 
or methods, APIs or combination of both). For each 
application there is features vector iV contains all features for 
such application, where, the feature vector represents all 
features. So, for each application ia   in the Applications 

set A there is binary vector },...,,,{ 321 ni vvvvV =  where, n is 
number of features, and,  





=
else

v
v n

i ,0
,1 V  in exist    feature exxtracted if

 

- The variable C is the type of the applications to be 
benign or malware  where { }Benign , Malware ∈C   

- The creating of matrix M process is described by 
following algorithm  : 

 
Input: set A contain all apk files and vector V contain all 
features (android system permissions or methods API or Both)                                                    
Output: matrix M contain all vectors iV  

for each ia  in A do 

       Extract all features from ia and set it to set iS  

       for each ij Ss  ∈  do  

             if Vs j   ∈    do 

                  in Vv  ∈    = 1 
             else  
                  in Vv  ∈    = 0 
             end if  
       end for 
       Set iV  in M  
end for  
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C. Choosing informative features  
A key idea behind selecting the most informative features is 

to find a minimum set of features such that the resulting 
probability distribution of the data classes is as close as 
possible to the original distribution obtained using all features 
and removing as much irrelevant and redundant information as 
possible.   

 Using the reduced set of features has additional benefits. It 
reduces the number of features appearing in the discovered 
patterns, which helps in making the patterns easier to be 
understood. Further it enhances the classification accuracy and 
learning runtime. 

In the conducted experiments, the previously mentioned 
methodology for feature extraction is applied to produce a 
matrix M, which contains the binary vectors of the features 
from all collected applications.  

Then, to select the most informative feature set, the feature 
selection GainRatio are used to select the most informative 
features then rank the features from highest to lowest feature 
using ranking algorithm then drop or remove all features have 
zero score to have finally an ordered set of features. 

 The Gain Ratio score is calculated for feature vectors based 
on the following formula [40], [41]:  
             

( ) ( ) ( )
)(

)|(,
n

n
n vH

vCHCHvCGainRatio −
=                             (1) 

         Where H is the information entropy,  Y and X  are 
random variables and  P  is the probability. 
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     Where the conditional entropy of two events X and Y   
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VI. FEATURES 
To classify smartphone applications as malicious or benign, 

it is widely required for each application to extract its features 
which help in identifying the application as malware or benign 
application. Those extracted features are required to be 
informative to produce an accurate decision.  

In this section, we describe the features which are proposed 
to be extracted by applying the discussed features extraction 
and filtering methodology.  

A. Android Permission 
Android permissions control the access to sensitive 

resources and functionalities. Permissions allow an application 
to access potentially dangerous API functionality. Many 
applications require several permissions to do its function 
properly. Also, android systems allow developer to create his 
own permissions that allow other application to access some 
activities without developed it again. All these permissions 
whether android system permission and user permission must 
be listed explicitly in the application’s Manifest.xml file, and 

each application must have an android Manifest.xml in its root 
directory [42], [43].   

For example, applications that want to connect to internet 
need to use the permission INTERNET, to call phone 
CALL_PHONE permission is used, to send SMS message 
SEND_SMS permission is used, to access camera CAMERA 
permission is used and so on. 
Using the permissions as features for machine learning 
classifiers can help to detect the malware before the 
installation. So, analyzing the android applications manifest 
files to identify the permission set requested by that 
application can considered as an informative methodology for 
anomaly based feature extraction in static manner. 

First, we extracted all permissions from all of the collected 
dataset whether android system permissions or permissions 
developed by developer of applications, we noted, that the 
benign application use 1141 permissions and malware 
application use 4882 permissions. Approximately, malware 
applications use nearly three times permissions more than 
benign applications, that means malwares actually use 
permissions to access functions the benign applications not 
use.    

We focused on the android system permissions ,so we 
found that  android 5.0 Lollipop with API level-21 [43],[44]  
provide 151 android system permissions , according to 
considering all of android system permissions as a feature set 
will produce an enormous feature vector for each application. 
So it is required to reduce the number of the selected features. 

For reducing the feature set, a preprocessing step has been 
performed, which is removing all zero-frequency-permissions 
in the binary matrix M . The permissions that its frequency is 
zero are those which are not used by any malware or benign 
applications, the number of features were reduced to 114 
features. 

Then, we calculated GainRatio score for each permission. 
All permissions that its score is zero are removed. A set of 
ordered features (permissions) from highest to lowest gainratio 
score have been produced as shown Fig. 2.   

B. Methods and APIs 
API refer to application programming interface, it consists 

of packages, classes and methods to help developer to develop 
applications. Android provides developer with APIs to 
develop android applications, and developer also can use 
externals APIs such as others Java and Jason APIs.   

Android applications are developed in Java and compiled 
into optimized bytecode for the Dalvik virtual machine. This 
bytecode can be disassembled and provides information about 
packages, classes, methods, parameters and data used in the 
application.    

 As mentioned before we developed python script based on 
Androguard APIs to extract information from dex files, the 
script extracts both the method name and its class path. The 
extracted methods and its class path are concatenated in one 
string separated by semi coma, as, for example: 

 
“value;Landroid/annotation/SuppressLint;”  
 Where “value”is the method name or API Call and 
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“Landroid/annotation/SuppressLint” is the class path and 
“SuppressLint” is the class name where the “SuppressLint” 
belongs to the package android.annotations.   

  We extracted all the methods names and its associated 
class paths from all malware and we found that the number of 
extracted methods and its class paths are more than 911967 
string. Actually, there are a lot of repetitions. So, we 
calculated the frequency for each method associate with its 
class path. The number of features has been more than 16356 
methods and their class paths. We selected the top 500 
features with top frequency.  
The feature extraction methodology described before is 
applied for each application to build the binary matrix M of 
feature vectors. Then, the gainratio for each feature is 
calculated, and, the features with zero weight are removed to 
have only 346 features ranked from highest to lowest from 
16356 features.  

 
Fig.2 Top 58 ranked permissions 

 
Fig.3 30 ranked methods and APIs 

We noted that the external APIs have more informative 
values than the Android APIs. Therefore in this study we   
focused in the external APIs more than Android APIs - Fig. 3 
show only 30 ranked features. 

C. Combination of features 
We combined the reduced permissions and the APIs methods 
features, and calculated the gainratio for each feature then 
ranking the gainratio scores from the highest to lowest to have 
an ordered list consist of 404 features based on combination of 
permissions, methods and its class paths.      
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VII. EXPERIMENTS SETUP 
In our experiments, the different feature sets obtained from 
previously mentioned feature extraction techniques are 
categorized using more than one classifier from WEKA tool 
[45]. 

A. Classifiers  
In the conducted experiments, thirteen classifiers from 

WEKA have been used to choose the best features set. Where, 
some of classifiers were tree based classifiers, such as, C4.5 
algorithm (J48) ExtraTree , J48Consolidated(J48C) , 
RandomForest Tree(RFT), RandomTree (RT) and best-first 
decision tree (BFT),  some of classifiers were mathematical 
based classifiers, such as feed forward neural network 
(MultilayerPerceptron MLP) with .001 learning rate , Support 
vector machine (SVM) , Radial Basis Function Network 
(RBF) , stochastic gradient descent (SGD),Logistic Regression 
(Log), and some of classifiers were lazy based classifiers, such 
as, K- nearest neighbours classifier (IBk) and  KStar . 

B. Learning and Testing Options 
WEKA has different mechanisms to divide the experimental 
dataset into training dataset and testing dataset testing that is 
used to train and test the classifiers models. The first 
methodology is k-cross validation [46]. In k-fold cross-
validation, the dataset is randomly partitioned into k equal size 
subsamples. One subsample is used as the validation data for 
testing the model, and the remaining k-1 subsamples are used 
as training data. Then repeated k times, with each of the k 
subsamples used exactly once as the validation data. The k 
results from the folds can then be averaged to produce a single 
estimation. In the conducted experiments, two k values have 
been chosen, k=10 and k=3 folds. 

Another mechanism is simply to divide dataset into two 
portions in a random manner. Here, 66% of the original 
dataset are randomly chosen for training, and the remaining 
34% of the data are used for testing, the last testing option is 
using same data for training and this option useful to give us 
an intuition on how the selected features are good to classify 
the selected data but it does not have any indication of how the 
classification model will perform on new data.   

This study will choose the best features sets combined with 
machine learning classifiers based on the results of testing 
options for the classification models based on this order of the 
testing options first testing option with 10 folds will be the 
main testing option to distinguish between classification 
models results, then 3 fold, then split data to 66% and 34 % 
and in the last option is using same data for training and 
testing  

C. Measure of classifiers 
The evaluation was performed by following measures [46]:  
 

( )
( )FNFPTNTP

TNTPAccuracy
+++

+
=                                         (4) 

The Accuracy  is the percentage of predictions that is 
correct, where TN is the number of benign applications 

correctly classified, TP is the number of malware cases 
correctly classified,  FP is the number of benign applications 
incorrectly detected as malware, and FN is the number of 
malware incorrectly classified as benign applications . 
 

FN)+(TP
TP =RateTP                                                            (5) 

TP Rate The percentage of positive labeled instances that 
were predicted as positive.         

N
FP =Rate FP                                                                       (6) 

FP Rate is the percentage of positives cases that were 
incorrectly classified as negative, and where the N is the 
number of all benign. 
ROC curve is obtained by plotting the TP Rate (TPR) against 
the FP Rate (FPR). An ROC curve plots the TPR against FPR 
for every possible detection cut-off. The total area under the 
ROC curve (AUC) indicates the classifier’s predictive power. 
If the AUC value is 1, that implies perfect classification.  If the 
AUC value is close to 1, that denotes good classier predictive 
power [47]. 

D. Extraction processing Time 
To analyze the time for extracting different set of features, 

the experiments for extracting and building the dataset were 
performed on a desktop computer with Intel core i5 and 4GB 
of RAM, The operating system of this machine is Microsoft 
Windows 7 and the experiment is running on Ubuntu-Linux 
installed on virtual machine Oracle VM VirtualBox. 

Table II represents the average extraction time for the 
features of the three feature models for, where, Model 1 
represents the features set based on permissions, Model 2 
represents the features based on methods and APIs and the 
Model 3 represents the features set based on the combination 
of features.   

It is widely noted from table II that the average extraction 
time for the models, which is based on API methods, is larger 
than the model which is based on permissions features only.  

 
 Table II Features extraction time 

 Model 1 Model 2 Model 3 
Type of features Permissions API methods Combination 
 Features number 58 346 404 
Extraction time 
for 325 malware 

10.37 sec 
 

972.16 sec 
 

978.47 sec 
 

Average 0.0319 sec 2.9912 sec 3.0106 sec 
extraction time  
for 325 benign 

9.24 sec 
 

2100.23 sec 
 

2115.26 sec 
 

Average 0.02843 sec  6.4622 sec 6.5084 sec 
 
Also, as noted, the extraction time depend on the amount of 

data extracted from the Mainfeast.xml file and the dissemble 
dex files, where, the number of permission extracted from 
Mainfeat.xml files for benign is 1141 permission and for 
malware is 4882 permission, while the number of extracted 
methods and its class paths as one sting from malware is 
911967 string, and for benign is 1185635 string.   

 

INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 10, 2016

ISSN: 1998-4480 26



 

 

VIII. EXPERIMENTS RESULTS 
In this section, we show the classification accuracy results 

in details for each of the three previously mentioned models. 

A.  Reduced Permission 

 
Fig. 4 Accuracy for features based permissions 

 
From Fig. 4, we can note that the best accuracy results for 

reduced permissions as features combined with machine 
learning classifiers are  87.2308% with testing option 10 folds  
using MLP  as classifier  ,with 3 folds is 86.9231% ,and using 
34%of data for testing is 89.5928% also using MLP as 
classifier. While, with training data as testing data is 
92.3077%  using classifiers RT, Extra tree and IBk, but the 
testing using same training data give us how this features are 
good for this data but not give any induction about future or 
new data. 

As mentioned earlier, an AUC value closer to 1 denotes 
better classifier predictive power and it can be observed from 
Fig. 5 AUC for reduced permission combined with MLP 
classifier using 10 folds as testing is 0.9143 of area under the 
ROC curve.    

 

 
Fig. 5 Roc Curve –reduced permission 10 folds 

 
so we can conclude that the best accuracy result obtained by 

using reduced permissions as features is  87.2308% and with 
weighted averages for FP Rate and TP Rate  are 0.128, 0.872 
respectively    

B. Methods and APIs 
From Fig. 6, we can note that, the best accuracy results for 

Methods and APIs as features combined with machine 
learning classifiers are 74.9231 % for testing option 10 folds 
using RFT classifier, and with testing option 3 folds is 
74.9231 % using RFT and Log classifiers, and with testing 
with 34% of data is 76.9231 % with all classifiers expect RBF 
and RFT are 76.4706 %   and with testing using same data is 
74.9231 with all classifiers expect the SVM.  

 
 

 
Fig. 6 Accuracy for features based methods and APIs 

 
It can be observed from the Fig. 7 that represents the ROC 

curve for Methods and APIs as features combined with RFT 
using 10 folds that the curve is going away from the left-hand 
border that represent the true positive rate also, also the AUC 
is 0.784 of area under the ROC curve, so we can conclude that 
the features based methods an APIs only give low accuracy 
and high false positive rate.     

 

 
Fig. 7 ROC Curve –methods, APIs 10 folds 

 
So from comparing the results, we can conclude that the 

best accuracy based on methods and APIs as features is 
74.9231 % and with weighted averages for FP Rate, and TP 
Rate 0.251, 0.749 respectively 

C. Combination between features 
We can note from Fig. 8 that , the best accuracy results for  

combination between features reduced permissions methods 
and APIs  combined with machine learning classifiers are for 
testing option 10 folds is 91.5385 %  using  RBF classifier  
,and with 3 folds is 91.2308 %% with RBF , KStar and BFT  
classifiers ,and with testing with 34% of data the best accuracy 
result is 92.3077 % with RBF and KStar while with testing 
using same data, the  best accuracy result is 96.7692 % with 
RT and IBK classifiers , from comparing the results we can 
note that the best accuracy is 96.7692 % but the testing using 
same training data give us how this features are good for this 
data but not give any induction about new data , also we can 
note that the combined features combined with RBF classifier 
using 10 folds , 3folds and 34% testing option give higher 
accuracy results than using combination features with others 
classifiers especially RT and IBK classifiers. 
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Fig. 8 Accuracy for combination features 

. 
Also the ROC curve in Fig. 9 show that the area under the 

curve is 0.953 for the combination features with RBF 
classifier   using 10 folds ,we can note form the Fig.9 that the 
curve  follows and  closer to the left-hand border and then the 
top border of the ROC space, that mean more accurate the test.  

 

 
Fig. 9 ROC Curve – Combination 10 folds 

 
So we can conclude that the best accuracy result obtained by 

using the combination of features, the reduced permissions, 
Methods and APIs is 91.5385 % and with weighted averages 
for FP Rate and TP Rate 0.085, 0.915 respectively. 

D. Comparing between best results  
The comparison between results obtained from the three 

models of feature extractions is shown in Fig. 10 and table III 
  The figure shows that the highest accuracy, which is 

91.5385 % with high TP rate 0.915, high AUC value 0.953, 
and the lowest FP rate 0.085, belongs to the ordered features 
set based on the combination of features with Radial basis 
function (RBF)  as machine learning classifier. While, coming 
in the second place is the ordered features set based on 
reduced permissions combined with MultilayerPerceptron as 
machine learning classifier with high detection accuracy 
87.2308%, high TP rate 0.872, high AUC value 0.9143 and 
low FP rate 0.128. 

 
Table III –AUC Comparison 

Features Permissions Methods,APIs Combination 
AUC 0.9143 0.784 0.953 

 

 
Fig. 10 Comparison for Classifiers Accuracy for different features 

sets 
 

 Although as shown in table II the features set for model 3 
gives better result than features set for model 1, the extraction 
time for features of model 3 is larger than the extraction time 
for features of model 1. Where, the extraction time for features 
of model 3 is ranged between 3.0106 and 6.5084 seconds per 
application, while the extraction time for features of model 1 
is ranged between 0.02843 and 0.0319 seconds per application 
as mentioned early in table II. That means, models based on 
reduced permissions features will be faster, but with lower 
accuracy. 

IX. CONCLUSION 
In this paper, we have proposed an effective approach of 

detecting malwares before installing it using static code 
analysis. It takes into account various features based on 
permissions declared in AndroidManifest.xml file and 
methods and APIs used in the applications. We have extracted 
the features from 650 application divided into 325 for malware 
representing 89 malware families and 325 benign applications.  

The applied experiments concluded that models based on 
using reduced permissions as feature set is faster than other 
models with average extraction time ranged between 0.02843 
and 0.0319 seconds per application and with AUC value 
0.9143 and classification accuracy 87.2308%. While, models 
based on using a combination between permissions and API 
methods as a feature set is more accurate in classification with 
AUC value 0.953 and classification accuracy 91.5385%, but it 
need 3.0106 and 6.5084 seconds per application for extract 
features so it consumes more time to extract the needed 
features. 
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